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On the Numerical Computation of Eigenvalues and 
Eigenvectors of Symmetric Integral Equations 

By Peter Linz* 

Abstract. The well-known error estimates for the numerical computation of eigenvalues of 
symmetric integral equations are extended to the computation of the eigenvectors. The 
results are used to justify the application of an improvement method to obtain an efficient 
algorithm for solving the eigenvalue problem. 

1. Introduction. The eigenvalues and eigenvectors of the integral equation 

(1) nXu.(x) = Ku.(x) f K(x, t)u"(t) dt, 

with symmetric kernel K(x, t) K(t, x), may be approximated numerically by re- 
placing the integral in Eq. (1) by a numerical quadrature. The corresponding equa- 
tion is 

N 

(2) Anv.(x) = w K(x, xi)v.(xj), 
*-1 

where An and v"(x) are approximations to X. and un(x), respectively. We will make 
the usual assumptions that wi > 0 and Egf-, wi = 1. Satisfying Eq. (2) at the points xi, 
we obtain the matrix eigenvalue problem 

(3) A~v. = Av,, 

where v. is a vector with components v"(x3), and A a matrix with elements 

a; = wK(x,, xi). 

A, while generally not symmetric, can be symmetrized by a simple similarity trans- 
formation, and we will assume that this has been done. For simplicity, we will also 
assume that the eigenvalues of Eq. (1) are nondegenerate. 

Error estimates for the computed eigenvalues have been considered by a number 
of authors (Wielandt [5], Brakhage [1], Keller [3]). Their results show that the order 
of accuracy of the computed eigenvalues is the same as the order of accuracy of the 
chosen quadrature formula. In this paper we show that similar estimates hold for 
the computed eigenvectors. These estimates are then used as a justification for a 
method for improving the accuracy of the eigenvalues. In practice this implies that 
we can obtain highly accurate eigenvalues without having to solve the eigenvalue 
problem for large matrices. 
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2. Error Estimates for the Eigenvalues. Brakhage [1] showed that if A, is an 
eigenvalue of Eq. (3), then there exists an eigenvalue Xi of Eq. (1) such that 

(4) j|k Xil < /Q(Ak 12 _ 6)1/2 

provided that IA, 12 > 6, where 
1 iV I 

6 -- max j K(x, t)K(t, s) dt - wi K(x, xi)K(xi, s) 
O<X,a O il 

The largest eigenvalues are here associated with the smallest error bounds. Intuitively, 
one expects that the accuracy of the eigenvalue is determined by the smoothness 
of the associated eigenvector rather than by its magnitude. This is more apparent 
in Keller's formulation [3] which states that if Xi is an eigenvalue of Eq. (1) then 
there exists an eigenvalue A, of Eq. (3) such that 

(5) AAk - XJl - c max 1,e(x)k, 

where c is a constant (of order unity) and 
1 N 

= J K(x, t)dj(t) dt - ivi K(x, xj)dj (x,), 
o .~~~~~~-1 

where ui is an eigenfunction normalized such that 

| d,(x) dx = I. 

3. Error Estimates for the Eigenvectors. The results of the previous section 
can be extended to the computation of the eigenvectors. Let uk denote the vector 
with components Uk(xi). Assume that all the eigenvectors u, and v, (k = 1, 2, , N) 
are normalized such that 

Iu,,~I- (u,, u,1)2 'N { (X1)} 1,1v,21 
|lUk||=l / (Uk, Uk) IlV N t k(X) 

I 
1, |Vk1| I 

Let e, denote the vector with components ei(xj), where 

rl ~~~~~~~~~IV 
ei(x) J K(x, t)uj(t) dt - wi K(x, x1)uj(xj). 

o .~~~~~~1 

THEOREM 1. Let Xi and uj be a solution of Eq. (1), and let Ak be a solution of Eq. (3) 
such that jX, - Ak, satisfies the inequality (5). Then the eigenvector Vk associated 
With A, satisfies 

(6) ji -vkI I < ?leil + O(Ileil2/A2Ak), 

where A,, = minik |Ak - Ai! -- c max Jej(x)j, provided that Ai, > 0. 
Proof From Eq. (1) we have 

(7) Xjuj = Au, + ej. 

Since A is symmetric its eigenvectors are complete and orthogonal and we can write 
N N 

U. = Vk + E ajv,, = e d3,iv,. 
i=1 i 1 
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Substituting into Eq. (7), 
N N N 

XiVk + Xi ai j jj= AkVk + Ajiv + ftiiV; 
i-1 i-1 i-1 

Because of the orthogonality of the vi we then have 

ajlX=Aoil for I l k. O 
Xi - Al 

Now 

lX - Al1ljIX - Akl - jAk - AllI 

A A,,k, for Al,, > 0. 

Also, 
N 

1eill2 = gii)2' 
i-1 

so that 

tlzt~ ' t|eitt, tautll < I|eu|l/A^,, I 0 k, 

and since 

Itu;||= (1 + ak)2 + 1 (an) - 1, atj, ?(| e,112/A2) isk 

Finally, 
/2 

IU - Vk || {(a jk)2 + 1I (aii)2 
ipdk 

- 

)2 + 1 )2 < - 

lteeli + O(lleuII2/A^,) 

Thus, if A, is well separated from the other computed eigenvalues the norm of the 
error is essentially proportional to the quadrature error. From (6) we have immediately 
that 

(8) lu,(x,) - v,(xl =< 0/ 11eill + (ljle l l2/A^A) 

at the meshpoints xi, i = 1, 2, * , N. If vk(X) is computed by Eq. (2), then a similar 
estimate holds for all points of the range. 

THEoREM 2. If K(x, t) is bounded in the closed unit square, IK(x, t)j < L, then, 
for all x C [0, 1], 

jUA(x) -V(X) < max le,(x)l + max le(x)l Iu,(x)I 

+ 
IAkl 

N lle.tt + O(llekll2/ak), 

where c is the same constant as in Eq. (5). 
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Proof. 

tu,(x) - Vk(X)? ;*J K(xj t)ui(t) dt - A E wi K(x, xi)vk(xt) 

1 f, IK(x, t)ui(t) dt - a w;K(x, xi)ui(x;) 

iN 1N 
+ | A w, K(x, xi)u(x5) - wi K(x, xi)ui(x5) 

i A*=k ;-I 

1N 1 N 

+ y- ? wi K(x, xi)ui(x,) - a wi K(x, xi)vk(x;) . 
Ak j-1 Ak ~~~~i-I 

and, applying inequalities (5) and (8), the estimate (9) follows. 

4. An Efficient Method for Computing the Eigenvalues. We denote the inner 
product 

f f(t)g(t) dt 

by (f, g). It is well known that if vk(x) is an approximation to uk(x) such that vk(x) = 
uk(x) + O(A), then an approximate eigenvalue may be computed by the Rayleigh 
quotient 

(10) Ak = (Vk, Kvk)/(vk, Vk) = Xk 
+ 

0(A2). 

Since a solution of Eq. (3) produces eigenvalues and eigenvectors with the same 
order of accuracy we can use the computed eigenvectors to improve the accuracy 
of the eigenvalues. Normally one will not be able to evaluate the required integrals 
in closed form, but Eq. (10) may be replaced by its discrete analogue 

(11) Ak = - 

VkVk 

where AM' is the M X M matrix with elements 

a5 , = wi K(gi, xs), 

and Vk is the vector with components vkti), xi being the quadrature points for the 
M-point quadrature formula, and w, the associated weights. The v,(.ti) are to be 
obtained from vk(xi) by means of Eq. (2). It can then be shown that 

Ak = Am + 0(jje, 12), 

where AM is the eigenvalue we would obtain by solving Eq. (3) with M quadrature 
points. If we want to find eigenvalues to a certain accuracy we can use the following 
procedure: 

(1) Choose a quadrature formula with N points and solve (3) to find the eigen- 
values and eigenvectors. The N in this case can be kept considerably smaller than 
what we would have to choose if the results of (3) were to be used directly. 

(2) Use Eq. (11) with M > N to evaluate improved eigenvalues. This step involves 
matrix multiplications only. Provided our initial approximation to the eigenvalues is 
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TABLE 1 

Example 1 Example 2 Example 3 Example 4 

N = 2 .42678 1.33222 .25000 .27192 
N = 10 .40612 1.35214 .34343 .24407 
N = 20 .40549 1.35281 .34641 .24324 
N 30 .40538 1.35293 .34697 .24309 
N= 50 .40532 1.35299 .34725 .24301 
N 2, M = 50 .40507 1.35293 .34482 .24261 
N = 10, M 50 .40532 1.35299 .34725 .24300 
exact '0 .40528 1.35303 .34741 .24296 

sufficiently accurate, the final eigenvalues will be essentially as accurate as if we 
had solved (3) using M points. 

Thus, we avoid what is frequently the most time consuming part of the com- 
putation, the solution of the eigenvalue problem (3) for large matrices. 

5. Numerical Examples. In the following examples we computed the largest 
eigenvalue 1X0 by the midpoint quadrature rule using values of N = 2, 10, 20, 30, 50 
with Eq. (3), and values of N = 2, 10, M = 50 with the indicated improvement 
method. 

Example 1. 

K(x, t) = min (x, t), X0 = 4/ir2 = .40528. 

Example 2 (Brakhage [1]). 

K(x, t) = e=', X0 = 1.35303. 

Example 3 (Bfickner [2, p. 49]). 

K(x, t) = fx - ti, X0 = .34741. 

Example 4 (Mikhlin [4, p. 86]). 

K(x, t) = lx(2 -t), x < t, 

= t(2 -x), x > t, 

o= .24296. 

Results are given in Table 1. 
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